
openEuler 24.03 LTS SP2 Technical White Paper

1 Introduction

The openEuler open source community is incubated and operated by the OpenAtom Foundation.

openEuler is a digital infrastructure OS that fits into any server, cloud computing, edge computing,
and embedded deployment. This secure, stable, and easy-to-use open source OS is compatible
with multiple computing architectures. openEuler suits operational technology (OT) applications
and enables the convergence of OT and information and communications technology (ICT).

The openEuler open source community is a portal available to global developers, with the goal of
building an open, diversified, and architecture-inclusive software ecosystem for all digital
infrastructure scenarios. It has a rich history of helping enterprises develop their software,
hardware, and applications.

The openEuler open source community was officially established on December 31, 2019, with the
original focus of innovating diversified computing architectures.

On March 30, 2020, the Long Term Support (LTS) version openEuler 20.03 was officially
released, which was a new Linux distribution with independent technology evolution.

Later in 2020, on September 30, the innovative openEuler 20.09 version was released through
the collaboration efforts of multiple companies, teams, and independent developers in the
openEuler community. The release of openEuler 20.09 marked a milestone not only in the growth
of the openEuler community, but also in the history of open sourced software in China.

On March 31, 2021, the innovative kernel version openEuler 21.03 was released. This version is
enhanced in line with Linux kernel 5.10 and also incorporates multiple new features, such as live
kernel upgrade and tiered memory expansion. These features improve multi-core performance
and deliver the computing power of one thousand cores.

Fast forward to September 30, 2021, openEuler 21.09 was released. This premium version is
designed to supercharge all scenarios, including edge and embedded devices. It enhances
server and cloud computing features, and incorporates key technologies including cloud-native
CPU scheduling algorithms for hybrid service deployments and KubeOS for containers.

On March 30, 2022, openEuler 22.03 LTS was released based on Linux kernel 5.10. Designed to
meet all server, cloud, edge computing, and embedded workloads, openEuler 22.03 LTS is an all-
scenario digital infrastructure OS that unleashes premium computing power and resource
utilization.

On September 30, 2022, openEuler 22.09 was released to further enhance all-scenario
innovations.

On December 30, 2022, openEuler 22.03 LTS SP1 was released, which is designed for hitless
porting with best-of-breed tools.

On March 30, 2023, openEuler 23.03 was released. Running on Linux kernel 6.1, it streamlines
technical readiness for Linux kernel 6.x and facilitates innovations for hardware adaptation and
other technologies.

On June 30, 2023, openEuler 22.03 LTS SP2 was released, which enhances scenario-specific
features and increases system performance to a higher level.

Later on September 30, 2023, the openEuler 23.09 innovation version was released based on
Linux kernel 6.4. It provides a series of brand-new features to further enhance developer and
user experience.

On November 30, 2023, openEuler 20.03 LTS SP4 was released, an enhanced extension of
openEuler 20.03 LTS. openEuler 20.03 LTS SP4 provides excellent support for server, cloud
native, and edge computing scenarios.

On December 30, 2023, openEuler 22.03 LTS SP3 was released. Designed to improve developer
efficiency, it features for server, cloud native, edge computing, and embedded scenarios.

On May 30, 2024, openEuler 24.03 LTS was released. This version is built on Linux kernel 6.6
and brings new features for server, cloud, edge computing, AI, and embedded deployments to
deliver enhanced developer and user experience.

On June 30, 2024, openEuler 22.03 LTS SP4 was released. Designed to improve developer
efficiency, it further extends features for server, cloud native, edge computing, and embedded
scenarios.

On September 30, 2024, openEuler 24.09 was released. It is an innovation version built based on
Linux kernel 6.6 and brings more advanced features and functions.

On December 30, 2024, openEuler 24.03 LTS SP1 was released. This enhanced and extended
version of openEuler 24.03 LTS is developed on Linux kernel 6.6 and designed for server, cloud,
edge computing, and embedded deployments. It offers new features and enhanced functions that
streamline processes across a range of domains.

On March 30, 2025, openEuler 25.03 was released. It is an innovation version designed based on
Linux kernel 6.6 and is suited for server, cloud, edge, and embedded scenarios. It provides a
variety of new features and functions and brings brand-new experience to developers and users
in diverse industries.

More recently on June 30, 2025, openEuler 24.03 LTS SP2 was released. It is an enhanced
version of 24.03 LTS based on the Linux 6.6 kernel. It is designed for server, cloud, AI, and
embedded scenarios, introducing new functions and features covering kernel optimization,
heterogeneous collaborative inference, high-density many-core computing, confidential
containers, and multi-core and multi-instance hybrid deployment. This latest openEuler release
offers enhanced experience for developers and users across various industries.

As an OS platform, openEuler releases an LTS version every two years. Each LTS version
provides enhanced specifications and a secure, stable, and reliable OS for enterprise users.

openEuler is built on tried-and-tested technologies. A new openEuler innovation version is
released every 6 months to quickly integrate the latest technical achievements of openEuler and
other communities. The innovative tech is first verified in the openEuler open source community
as a single open source project, and then these features are added to each new release,
enabling community developers to obtain the source code.

Technical capabilities are first tested in the open source community, and continuously
incorporated into each openEuler release. In addition, each release is built on feedback given by
community users to bridge the gap between innovation and the community, as well as improve
existing technologies. openEuler is both a release platform and incubator of new technologies,
working in a symbiotic relationship that drives the evolution of new versions.

Innovative Platform for All Scenarios

openEuler supports multiple processor architectures (x86, Arm, SW64, RISC-V, LoongArch, and
PowerPC), as part of a focus to continuously improve the ecosystem of diversified computing
power.

The openEuler community is home to an increasing number of special interest groups (SIGs),
which are dedicated teams that help extend the OS features from server to cloud computing,
edge computing, and embedded scenarios. openEuler is built to be used in any scenario.

The OS is a perfect choice for ecosystem partners, users, and developers who plan to enhance
scenario-specific capabilities. By creating a unified OS that supports multiple devices, openEuler
hopes to enable a single application development for all scenarios.

Open and Transparent: Open Source Software Supply Chain

The process of building an open source OS relies on supply chain aggregation and optimization.
To ensure reliable open source software or a large-scale commercial OS, openEuler comprises a
complete lifecycle management that covers building, verification, and distribution. The brand
regularly reviews its software dependencies based on user scenarios, organizes the upstream
community addresses of all the software packages, and verifies its source code by comparing it
to that of the upstream communities. The build, runtime dependencies, and upstream
communities of the open source software form a closed loop, realizing a complete, transparent
software supply chain management.

2 Platform Architecture

System Framework

openEuler is an innovative open source OS platform built on kernel innovations and a solid cloud
base to cover all scenarios. It is built on the latest trends of interconnect buses and storage
media, and offers a distributed, real-time acceleration engine and base services. It provides
competitive advantages in edge and embedded scenarios, and is the first step to building an all-
scenario digital infrastructure OS.

openEuler 24.03 LTS SP2 runs on Linux kernel 6.6 and provides POSIX-compliant APIs and OS
releases for server, cloud native, edge, and embedded environments. It is a solid foundation for
intelligent collaboration across hybrid and heterogeneous deployments. openEuler 24.03 LTS
SP2 is equipped with a distributed soft bus and K3s edge-cloud collaboration framework, among
other premium features, making it a perfect choice for collaboration over digital infrastructure and
everything connected models.

In the future, the openEuler open source community will continue to innovate, aiming to promote
the ecosystem and consolidate the digital infrastructure.

Cloud base:

⚫ KubeOS for containers: In cloud native scenarios, the OS is deployed and maintained in
containers, allowing the OS to be managed based on Kubernetes, just as service containers.

⚫ Secure container solution: Compared with the traditional Docker+QEMU solution, the
iSulad+shimv2+StratoVirt secure container solution reduces the memory overhead and boot
time by 40%.

⚫ Dual-plane deployment tool eggo: OSs can be installed with one click for Arm and x86
hybrid clusters, while deployment of a 100-node cluster is possible within just 15 minutes.

New scenarios:

⚫ Edge computing: openEuler 24.03 LTS SP1 Embedded is released for edge computing
scenarios. It integrates the K3s edge-cloud collaboration framework to provide unified
management, provisioning of edge and cloud applications, and other capabilities.

⚫ Embedded: openEuler 24.03 LTS SP1 Embedded is released for embedded scenarios,
helping compress images to under 5 MB and shorten the image loading time to under 5
seconds.

⚫ AI-native OS: The OS enables AI software stacks with out-of-the-box availability.
Heterogeneous convergence of memory, scheduling, and training/inference resources
reduces AI development costs and improves efficiency. The intelligent interaction platform of
the OS streamlines development and administration.

Flourishing community ecosystem:

⚫ Desktop environments: UKUI, DDE, Kiran-desktop, and GNOME.

⚫ openEuler DevKit: Supports OS migration, compatibility assessment, and various
development tools such as secPaver which simplifies security configuration.

Platform Framework

The openEuler open source community partners with upstream and downstream communities to
advance the evolution of openEuler versions.

Hardware Support

The openEuler open source community works with multiple vendors to build a vibrant southbound
ecosystem. With participation of major chip vendors including Intel and AMD, all openEuler
versions support x86, Arm, ShenWei, Loongson, and RISC-V CPU architectures, and a wide
range of CPU chips, such as Loongson 3 series, Zhaoxin KaiXian and KaiSheng, Intel Sierra
Forest and Granite Rapids, and AMD EPYC 4/5. openEuler can run on servers from multiple
hardware vendors and is compatible with NIC, RAID, Fibre Channel, GPU & AI, DPU, SSD, and
security cards.

openEuler supports the following CPU architectures:

Hardware Type x86_64 AArch64 LoongArch SW64 RISC-V

CPU Intel, AMD,
Hygon, Zhaoxin

Kunpeng,
Phytium

Loongson ShenWei Sophgo, THead,
etc.

Visit https://www.openeuler.org/en/compatibility/ to see the full hardware list.

3 Operating Environments

Servers

To install openEuler on a physical machine, check that the physical machine meets the
compatibility and hardware requirements.

For a full list, visit https://openeuler.org/en/compatibility/.

https://www.openeuler.org/en/compatibility/
https://openeuler.org/en/compatibility/

Item Configuration Requirement

Architecture AArch64, x86_64, RISC-V, LoongArch64, SW64

Memory ≥ 4 GB

Drive ≥ 20 GB

VMs

Verify VM compatibility when installing openEuler.

Hosts running on openEuler 24.03 LTS SP2 support the following software packages:

⚫ libvirt-9.10.0-16.oe2403sp2

⚫ libvirt-client-9.10.0-16.oe2403sp2

⚫ libvirt-daemon-9.10.0-16.oe2403sp2

⚫ qemu-8.2.0-36.oe2403sp2

⚫ qemu-img-8.2.0-36.oe2403sp2

openEuler 24.03 LTS SP2 is compatible with the following guest OSs for VMs:

Guest OS Architecture

CentOS 6 x86_64

CentOS 7 AArch64

CentOS 7 x86_64

CentOS 8 AArch64

CentOS 8 x86_64

Windows Server 2016 x86_64

Windows Server 2019 x86_64

Item Configuration Requirement

Architecture AArch64, x86_64

CPU ≥ 2 CPUs

Memory ≥ 4 GB

Drive ≥ 20 GB

Edge Devices

To install openEuler on an edge device, check that the edge device meets the compatibility and
minimum hardware requirements.

Item Configuration Requirement

Architecture AArch64, x86_64

Memory ≥ 4 GB

Drive ≥ 20 GB

Embedded Devices

To install openEuler Embedded on an embedded device, check that the embedded device meets
the compatibility and minimum hardware requirements.

Item Configuration Requirement

Architecture AArch64, AArch32, x86_64

Memory ≥ 512 MB

Drive ≥ 256 MB

4 Scenario-specific Innovations

AI

AI is redefining OSs by powering intelligent development, deployment, and O&M. openEuler
supports general-purpose architectures like Arm, x86, and RISC-V, and next-gen AI processors
like NVIDIA and Ascend. Further, openEuler is equipped with extensive AI capabilities that have
made it a preferred choice for diversified computing power.

OS for AI

Ready-to-Use Availability

openEuler offers an efficient development and runtime environment that containerizes software
stacks of AI platforms with out-of-the-box availability. It also provides various AI frameworks to
facilitate AI development.

Feature Description

openEuler supports TensorFlow, PyTorch, and MindSpore frameworks and software development
kits (SDKs) of major computing architectures, such as Compute Architecture for Neural Networks
(CANN) and Compute Unified Architecture (CUDA), to make it easy to develop and run AI
applications.

Environment setup is further simplified by containerizing software stacks. openEuler provides
three types of container images:

⚫ SDK images: Use openEuler as the base image and install the SDK of a computing
architecture, for example, Ascend CANN and NVIDIA CUDA.

⚫ AI framework images: Use an SDK image as the base and install AI framework software,
such as PyTorch and TensorFlow. You can use an AI framework image to quickly build a
distributed AI framework, such as Ray.

⚫ Model application images: Provide a complete set of toolchains and model applications.

For details, see the openEuler AI Container Image User Guide.

Application Scenarios

openEuler uses AI container images to simplify deployment of runtime environments. You can
select the container image that best suits your requirements and complete the deployment in a
few simple steps.

⚫ SDK images: You can develop and debug Ascend CANN or NVIDIA CUDA applications
using an SDK image, which provides a compute acceleration toolkit and a development
environment. These containers offer an easy way to perform high-performance computing
(HPC) tasks, such as large-scale data processing and parallel computing.

⚫ AI framework images: This type of containers is designed to support AI model development,
training, and inference.

⚫ Model application images: Such an image contains a complete AI software stack and
purpose-built models for model inference and fine-tuning.

sysHAX

Feature Description

The sysHAX large language model (LLM) heterogeneous acceleration runtime enhances model
inference performance in single-server, multi-xPU setups by optimizing Kunpeng + xPU
(GPU/NPU) resource synergy.

⚫ Operator pushdown acceleration: Adapts to vLLM v0.6.6 to optimize the scheduling engine,
shortening latency on CPUs.

⚫ CPU inference acceleration: Improves CPU throughput via NUMA-aware scheduling,
parallelized matrix operations, and SVE-optimized inference operators.

⚫ Heterogeneous converged scheduling: When GPUs are fully loaded, the prefill phase of an
inference request can be executed on GPUs while the decode phase is handled by CPUs.

https://gitee.com/openeuler/docs/blob/stable2-22.03_LTS_SP3/docs/en/docs/AI/ai_container_image_user_guide.md

Application Scenarios

sysHAX is used to optimize Transformer models including DeepSeek, Qwen, Baichuan, and
Llama. Its CPU inference acceleration capability has been adapted to DeepSeek 7B, 14B, and
32B and Qwen2.5 series models. sysHAX fits into the following application scenario:

Data centers: sysHAX assigns inference tasks to CPUs to fully utilize CPU resources and
increase the concurrency and throughput of LLMs.

Fault Detection by Group

Performance degradation during AI cluster training is inevitable and often results from a wide
range of complex factors. Existing solutions rely on log analysis after performance degradation
occurs. However, it can take 3 to 4 days from log collection to root cause diagnosis and issue
resolution on the live network. To address these pain points, an online slow node detection
solution is offered. This solution allows for real-time monitoring of key system metrics and uses
model- and data-driven algorithms to analyze the observed data and pinpoint slow or degraded
nodes. This facilitates system self-healing and fault rectification by O&M personnel.

Feature Description

Grouped metric comparison helps detect slow nodes and cards in AI cluster training. This
technology is built on Systrace and includes a configuration file, an algorithm library, and a slow
node analysis mechanism based on both time and space dimensions. It outputs the exception
timestamp, abnormal metrics, and IP addresses of slow nodes and cards. This technology
enhances overall system stability and reliability.

⚫ Configuration file: Contains the types of metrics to be observed, configuration parameters
for the metric algorithms, and data interfaces, which are used to initialize the slow node
detection algorithms.

⚫ Algorithm library: Includes common time series exception detection algorithms, such as
Streaming Peaks-over-Threshold (SPOT), k-sigma, abnormal node clustering, and similarity
measurement.

⚫ Data: Metric data collected from each node is represented by a time sequence.

⚫ Grouped metric comparison: Supports spatial filtering of abnormal nodes and temporal
exception filtering of a single node. Spatial filtering identifies abnormal nodes based on the
exception clustering algorithm, while temporal exception filtering determines whether a node
is abnormal based on the historical data of the node.

Application Scenarios

Systrace provides capabilities for detecting slow nodes, displaying alarms, and writing exception
information to drives.

AI model training: This feature quickly detects slow nodes for training jobs in large-scale AI
clusters, facilitating system self-healing and fault rectification by O&M personnel.

AI model inference: This feature identifies performance degradation across multiple instances of
the same model. By comparing resource usage of multiple instances, it quickly locates
underperforming instances to aid inference task scheduling and enhance resource utilization.

GMEM

In the post-Moore era, there have been breakthroughs in GPUs, TPUs, FPGAs, and other
dedicated heterogeneous accelerators. Similar to CPUs, these devices increase computing
speeds by storing data in local memory (such as LPDDR SDRAM or HBM), but such design
catalyzes more complicated memory systems. Modern memory systems have the following
defects:

⚫ Memory management is split between CPUs and accelerators. Explicit data migration makes
it difficult to balance the usability and performance of accelerators' memory.

⚫ The high bandwidth memory (HBM) available on accelerators is often insufficient for
foundation models. Manual swapping is only feasible in limited scenarios and typically results
in significant performance degradation.

⚫ A large number of invalid data migrations occur in search & recommendation and big data
scenarios, and no efficient memory pooling solution is available.

Heterogeneous Memory Management (HMM) is a Linux feature that is plagued by issues of poor
programming, performance, and portability, while also relying heavily on manual tuning. As such,
it is unfavored by most OS communities, and has fueled demand for an efficient solution for
heterogeneous accelerators. Generalized Memory Management (GMEM) is one new option,
which offers a centralized management mechanism for heterogeneous memory connections.
GMEM APIs are compatible with native Linux APIs, and feature high usability, performance, and
portability. After an accelerator calls GMEM APIs to connect its memory to the unified address
space, the accelerator automatically obtains the programming optimization capability for
heterogeneous memory, and does not need to execute the memory management framework
multiple times. This greatly reduces development and maintenance costs. Developers can apply
for and release a unified set of APIs to achieve heterogeneous memory programming without
memory migrations. If the HBM of an accelerator is insufficient, GMEM can use the CPU memory
as the accelerator cache to transparently over-allocate the HBM without manual swapping.
GMEM offers an efficient memory pooling solution thanks to a shared memory pool that
eliminates the need for duplicate migrations.

Feature Description

GMEM enhances memory management in the Linux kernel. Its logical mapping system masks
the differences between the ways how the CPU and accelerator access memory addresses. The
Remote Pager memory message interaction framework provides the device access abstraction
layer. In the unified address space, GMEM automatically migrates data to the OS or accelerator
when data is to be accessed or paged.

⚫ GMEM

GMEM leverages the computing power of both CPUs and accelerators. It combines the two
independent address spaces of the OS and accelerators into a unified virtual address space,
to realize unified memory management and transparent memory access.

GMEM uses a collection of new logical page tables to manage the unified virtual address
space, ensuring data consistency between the page tables of different CPUs and micro
architectures. Based on the memory access consistency mechanism of the logical page
tables, the target memory space can be migrated between the host and accelerator using a
kernel page fault handling procedure. If the accelerator's memory space is insufficient, the
accelerator can borrow memory from the host and reclaim its cold memory to achieve
memory overcommitment. This practice removes issues in which model parameters are
restricted by the accelerator's memory, and reduces the cost of foundation model training.

GMEM high-level APIs in the kernel allow the accelerator driver to directly use memory
management functions by registering the MMU functions defined in the GMEM specification.
With memory management functions, the accelerator can create logical page tables and
perform memory overcommitment. The logical page tables decouple the high-layer logic of
memory management from the CPU's hardware layer, so as to abstract the high-layer
memory management logic that can be reused by different accelerators. This design only
requires the accelerator to register bottom-layer functions, and does not need high-layer
logic for the unified address space.

⚫ Remote Pager

Remote Pager is a memory message interaction framework that adopts message channel,
process management, memory swap, and memory prefetch modules for the collaboration
between the host and accelerator. It is enabled by the independent driver remote_pager.ko.
The Remote Pager abstraction layer simplifies device adaptation by enabling third-party
accelerators to easily access the GMEM system.

⚫ User APIs

To allocate the unified virtual memory, you can directly use the mmap system call. GMEM
adds the flag (MMAP_PEER_SHARED) of allocating the unified virtual memory to mmap.

The libgmem user-mode library provides the hmadvise API of memory prefetch semantics
that helps optimize the accelerator memory access. For details, visit
https://gitee.com/openeuler/libgmem/blob/master/README.md.

⚫ Constraints

GMEM supports 2 MB huge pages only. Therefore, transparent OS huge pages must be
enabled on hosts and NPUs to use GMEM.

The heterogeneous memory obtained using MAP_PEER_SHARED cannot be inherited
during fork.

For details about how to use GMEM, visit:

https://gitee.com/openeuler/docs-centralized/tree/master/docs/en/docs/GMEM

Application Scenarios

⚫ Heterogeneous unified memory programming

To simplify heterogeneous memory programming, GMEM can allocate a unified virtual
memory to CPUs and accelerators, which then share the same pointer. For example, an
NPU memory management system can be connected to GMEM with just 100 lines of
modified code in the NPU driver, a huge reduction on the original 4,000 lines in the memory
management framework.

⚫ Automatic memory overcommitment of an accelerator

When a GMEM API is used to allocate memory to an application, the application is not
limited by the physical memory capacity of the accelerator. Instead, the application can
transparently over-allocate memory until the CPU's DRAM capacity is exhausted. GMEM
swaps cold device memory pages out to the CPU memory to achieve high-performance and
easy-to-start training and inference. This design makes GMEM deliver 1.6 times the
performance of NVIDIA-UVM in ultra-large model training when the overcommitment ratio is
200%. (Test results compared the Ascend 910 NPU and NVIDIA A100 GPU under the same
HBM conditions.)

AI for OS

AI makes openEuler more intelligent. openEuler Intelligence is an AI-powered Q&A platform built
on openEuler data. It supports intelligent question answering based on a knowledge base and
enables workflow orchestration through semantic interfaces. Additionally, it integrates some
system services to further improve the intelligence of openEuler.

https://gitee.com/openeuler/docs-centralized/tree/master/docs/zh/docs/GMEM

Intelligent Q&A

Feature Description

The openEuler Intelligence system is accessible via web or shell.

⚫ Web: Through the visual web entry, users can easily build and use the knowledge base, run
automated tests on the knowledge base, and view test evaluation results. They can also
register OpenAPI APIs and create workflow applications based on them. The web entry helps
beginners access openEuler knowledge and leverage openEuler's AI capabilities effortlessly.

⚫ Shell: Through the shell entry, users can use OpenAI API keys to trigger intelligent Q&A or
orchestrated workflows within the agent framework. The shell entry allows O&M personnel to
interact with openEuler in an OS-affinity and intelligent manner, simplifying operations and
reducing O&M costs.

Intelligent Scheduling and Recommendation

⚫ Intelligent scheduling: openEuler Intelligence allows users to define multiple workflows
within an application. When a query request is made, openEuler Intelligence automatically
extracts the relevant parameters and selects the most suitable workflow to execute the query
task.

⚫ Intelligent recommendation: Based on users' query requests and workflow execution
results, openEuler Intelligence recommends workflows that may be useful in future tasks,
increasing the likelihood of task completion and making applications easier to use.

Workflows

⚫ Semantic interfaces: A semantic interface contains natural language comments. openEuler
Intelligence supports two methods for registering semantic interfaces. The first method
allows users to register APIs with openEuler Intelligence as OpenAPI (3.0 or later) YAML
files. When writing an OpenAPI YAML file, users can add natural language comments to the
APIs. When these APIs are called, the foundation model selects the right APIs and sets their
parameters based on the comments. The second method allows users to register functions
with openEuler Intelligence as Python code, and this method provides a more user-friendly
option for using openEuler Intelligence. The semantic interfaces generated in both methods
can be orchestrated into workflows in a visualized manner.

⚫ Workflow orchestration and invocation: openEuler Intelligence enables users to visually
connect built-in semantic interfaces and user-registered interfaces to create workflows.
Users can debug these workflows, and then release and use them as applications. When
workflows are debugged and executed, intermediate results are displayed to help lower
debugging costs and enhance the overall user experience.

RAG

Retrieval-augmented generation (RAG) is a technique for enhancing the long-term memory
capability of large language models (LLMs). Used by the openEuler Intelligence system, RAG is
essential to reducing model training costs and has the following highlights:

⚫ Pre-processing for retrieval: When a user's query requests lacks sufficient information, it
can be rewritten based on historical context and inferred intent to enhance retrieval accuracy.

⚫ Knowledge indexing: For documents of various formats and content types, openEuler
Intelligence offers document parsing capabilities such as summarization, text feature
extraction, tree-structured parsing, and optical character recognition (OCR). These
capabilities help generate segment-level feature indexes to increase hit rates.

⚫ Retrieval enhancement: openEuler Intelligence supports eight retrieval methods. Among
them, the methods using dynamic keyword weighting and LLM-based filtering significantly
boost out-of-the-box accuracy.

⚫ Post-processing for retrieval: For fragments with missing context, a uniform randomized
context completion method is provided to enhance the completeness of fragment information
and reduce hallucination in model fitting. For fragments (sets) with the maximum number of
tokens, various methods are provided to enable intelligent Q&A for scenarios with limited
resources. These methods include the reranking method based on the Jaccard distance,
token compression method that removes common words and applies random discarding,
and token truncation method based on binary search.

These capabilities enable RAG for the openEuler Intelligence system to accommodate to more
document formats and content types, and enhance Q&A services with minimal impact on system
load.

Corpus Governance

Corpus governance is one of the basic RAG capabilities in the openEuler Intelligence system. It
imports corpuses into the knowledge base in a supported format using context location extraction,
text summarization, and OCR, increasing the retrieval hit rate.

⚫ Context location extraction: The relative location relationship within a document is
retained. Specifically, the global and local relative offsets of each segment are recorded to
support context completion.

⚫ Text summarization: Sliding windows and LLMs are used to generate text summaries for
complex documents or segments, supplying foundational data for multi-level retrieval.

⚫ OCR augmentation: For documents containing both images and text, summaries are
generated based on image text and surrounding context to provide foundational data for
answering image-related questions.

Automated Testing

Automated testing is a core RAG capability in openEuler Intelligence. It detects shortcomings in
the knowledge base and retrieval augmentation algorithms through automated dataset generation
and evaluation.

⚫ Dataset generation: After a user selects a parsed document, openEuler Intelligence
randomly samples a portion of the parsing results and sends them to an LLM. The LLM then
generates and filters Q&A pairs to create a high-quality test dataset that contains queries,
reference answers, and original segments.

⚫ Test evaluation: Automated tests are conducted using the user-generated dataset and the
predefined parameters such as the retrieval augmentation algorithm, LLM, and top-k
fragments. Tests score are calculated based on the queries, reference answers, original
fragments, associated fragments, and model fitting results in the test dataset. After that, the
test results are evaluated using metrics such as the precision rate, recall rate, fidelity value,
explainability, longest common substring score, edit distance score, and Jaccard similarity
coefficient.

Application Scenarios

⚫ Common users who are seeking best practices, such as porting applications to openEuler.

⚫ Developers who want to learn contribution processes, key features, project development,
and other extensive knowledge of openEuler.

⚫ O&M personnel who aim to solve common problems and improve system management
based on Q&A system suggestions.

For details, see the openEuler Intelligence Q&A User Guide.

https://gitee.com/openeuler/euler-copilot-framework/blob/master/docs/zh/openEuler_intelligence/intelligent_assistant/quick_start/smart_web/deploy_guide/offline.md
https://gitee.com/openeuler/euler-copilot-framework/blob/master/docs/zh/openEuler_intelligence/intelligent_assistant/quick_start/smart_web/deploy_guide/offline.md
https://gitee.com/openeuler/euler-copilot-framework/blob/master/docs/zh/openEuler_intelligence/intelligent_assistant/quick_start/smart_web/deploy_guide/offline.md

Intelligent Tuning

Feature Description

The openEuler Intelligence system supports the intelligent shell entry. Through this entry, you can
interact with openEuler Intelligence using a natural language and perform heuristic tuning
operations such as performance data collection, system performance analysis, and system
performance tuning.

Application Scenarios

⚫ Gaining insights from key performance metrics: You can learn about the system
performance status based on collected performance metrics like CPU, I/O, drive, network,
and application.

⚫ Analyzing system performance: Performance analysis reports are generated, making it
easier to locate performance bottlenecks across the entire system and in individual
applications.

⚫ Receiving performance tuning suggestions: The openEuler Intelligence system generates a
performance tuning script, which can be executed with one click to tune the system and
specific applications.

Intelligent Diagnosis

Feature Description

1. Inspection: The Inspection Agent checks for abnormalities of designated IP addresses and
provides an abnormality list that contains associated container IDs and abnormal metrics
(such as CPU and memory).

2. Demarcation: The Demarcation Agent analyzes and demarcates a specified abnormality
contained in the inspection result and outputs the top 3 metrics of the root cause.

3. Location: The Detection Agent performs profiling location analysis on the root cause, and
provides useful hotspot information such as the stack, system time, and performance metrics
related to the root cause.

Application Scenarios

In openEuler 24.03 LTS SP2, the intelligent shell entry enables capabilities like single-node
abnormality inspection, demarcation, and profiling location.

⚫ The inspection capabilities refer to single-node performance metric collection, performance
analysis, and abnormality inspection.

⚫ The demarcation capability is to locate the root cause based on the abnormality inspection
result and output the top 3 metrics of the root cause.

⚫ The profiling location capability refers to using a profiling tool to locate the faulty modules
(code snippets) based on the root cause.

Intelligent Container Images

Feature Description

The openEuler Intelligence system can invoke environment resources through a natural
language, assist in pulling container images for local physical resources, and establish a
development environment suitable for debugging on existing compute devices.

This system supports three types of containers, and container images have been released on
Docker Hub. You can manually pull and run these container images.

⚫ SDK layer: encapsulates only the component libraries that enable AI hardware resources,
such as CUDA and CANN.

⚫ SDKs + training/inference frameworks: accommodates TensorFlow, PyTorch, and other
frameworks (for example, tensorflow2.15.0-cuda12.2.0 and pytorch2.1.0.a1-cann7.0.RC1) in
addition to the SDK layer.

⚫ SDKs + training/inference frameworks + LLMs: encapsulates several models (for
example, llama2-7b and chatglm2-13b) based on the second type of containers.

The following table lists the container images supported by the openEuler Intelligence system:

Registry Repository Image Name Tag

docker.io openeuler cann 8.0.RC1-oe2203sp4

cann7.0.RC1.alpha002-oe2203sp2

docker.io openeuler oneapi-runtime 2024.2.0-oe2403lts

docker.io openeuler oneapi-basekit 2024.2.0-oe2403lts

docker.io openeuler llm-server 1.0.0-oe2203sp3

docker.io openeuler mlflow 2.11.1-oe2203sp3

2.13.1-oe2203sp3

docker.io openeuler llm chatglm2_6b-pytorch2.1.0.a1-
cann7.0.RC1.alpha002-oe2203sp2

llama2-7b-q8_0-oe2203sp2

chatglm2-6b-q8_0-oe2203sp2

fastchat-pytorch2.1.0.a1-cann7.0.RC1.alpha002-

oe2203sp2

docker.io openeuler tensorflow tensorflow2.15.0-oe2203sp2

tensorflow2.15.0-cuda12.2.0-devel-cudnn8.9.5.30-
oe2203sp2

docker.io openeuler pytorch pytorch2.1.0-oe2203sp2

pytorch2.1.0-cuda12.2.0-devel-cudnn8.9.5.30-
oe2203sp2

pytorch2.1.0.a1-cann7.0.RC1.alpha002-
oe2203sp2

Registry Repository Image Name Tag

docker.io openeuler cuda cuda12.2.0-devel-cudnn8.9.5.30-oe2203sp2

Application Scenarios

⚫ Common openEuler operations: Simplify the process of building a deep learning
development environment while saving physical resources. For example, set up an Ascend
development environment on openEuler.

⚫ openEuler development: Developers familiarize themselves with the openEuler AI software
stack to reduce the trial-and-error cost of installing components.

Embedded

openEuler 24.03 LTS SP2 is suited for embedded applications, offering significant progress in
southbound and northbound ecosystems, technical features, infrastructure, and implementation
over previous generations.

openEuler Embedded provides a closed loop framework often found in operational technology
(OT) applications such as manufacturing and robotics, whereby innovations help optimize its
embedded system software stack and ecosystem. openEuler Embedded enhances its software
package ecosystem by incorporating the oebridge feature, which supports online software
installation from an openEuler mirror site. When building Yocto images, oebridge can be used to
install openEuler RPM packages for easy image customization. openEuler Embedded also
supports the oedeploy feature for quick deployment of AI and cloud-native software stacks.
Kernel support in openEuler is enhanced by optimizing the meta-openeuler kernel configuration
and the oeaware real-time tuning feature. These updates help control interference and improve
real-time system responsiveness.

Future versions of openEuler Embedded will integrate contributions from ecosystem partners,
users, and community developers, increase support for chip architectures such as LoongArch
and more southbound hardware, and optimize industrial middleware, embedded AI, embedded
edge, and simulation system capabilities.

System Architecture

Southbound Ecosystem

openEuler Embedded Linux supports mainstream processor architectures like AArch64, x86_64,
AArch32, and RISC-V, and will extend support to LoongArch in the future. openEuler 24.03 and
later versions have a rich southbound ecosystem and support chips from Raspberry Pi, HiSilicon,
Rockchip, Renesas, TI, Phytium, StarFive, and Allwinner.

Embedded Virtualization Base

openEuler Embedded uses an elastic virtualization base that enables multiple OSs to run on a
system-on-a-chip (SoC). The base incorporates a series of technologies including bare metal,
embedded virtualization, lightweight containers, LibOS, trusted execution environment (TEE), and
heterogeneous deployment.

1. The bare metal hybrid deployment solution runs on OpenAMP to manage peripherals by
partition at a high performance level; however, it delivers poor isolation and flexibility. This
solution supports the hybrid deployment of UniProton/Zephyr/RT-Thread and openEuler
Embedded Linux.

2. Partitioning-based virtualization is an industrial-grade hardware partition virtualization solution
that runs on Jailhouse. It offers superior performance and isolation but inferior flexibility. This
solution supports the hybrid deployment of UniProton/Zephyr/FreeRTOS and openEuler
Embedded Linux or of OpenHarmony and openEuler Embedded Linux.

3. Real-time virtualization is available as two community hypervisors, ZVM (for real-time VM
monitoring) and Rust-Shyper (for Type-I embedded VM monitoring).

MICA Deployment Framework

The MICA deployment framework is a unified environment that masks the differences between
technologies that comprise the embedded elastic virtualization base. The multi-core capability of
hardware combines the universal Linux OS and a dedicated real-time operating system (RTOS)
to make full use of all OSs.

The MICA deployment framework covers lifecycle management, cross-OS communication,
service-oriented framework, and multi-OS infrastructure.

⚫ Lifecycle management provides operations to load, start, suspend, and stop the client OS.

⚫ Cross-OS communication uses a set of communication mechanisms between different OSs
based on shared memory.

⚫ Service-oriented framework enables different OSs to provide their own services. For
example, Linux provides common file system and network services, and the RTOS provides
real-time control and computing.

⚫ Multi-OS infrastructure integrates OSs through a series of mechanisms, covering resource
expression and allocation and unified build.

The MICA deployment framework provides the following functions:

⚫ Lifecycle management and cross-OS communication for openEuler Embedded Linux and the
RTOS (Zephyr or UniProton) in bare metal mode

⚫ Lifecycle management and cross-OS communication for openEuler Embedded Linux and the
RTOS (FreeRTOS or Zephyr) in partitioning-based virtualization mode

Northbound Ecosystem

⚫ Northbound software packages: Over 700 common embedded software packages can be
built using openEuler.

⚫ Soft real-time kernel: This capability helps respond to soft real-time interrupts within
microseconds.

⚫ DSoftBus: The distributed soft bus system (DSoftBus) of openEuler Embedded integrates
the DSoftBus and point-to-point authentication module of OpenHarmony. It implements
interconnection between openEuler-based embedded devices and OpenHarmony-based
devices as well as between openEuler-based embedded devices.

⚫ Embedded containers and edges: With iSula containers, openEuler and other OS
containers can be deployed on embedded devices to simplify application porting and
deployment. Embedded container images can be compressed to 5 MB, and can be easily
deployed into the OS on another container.

UniProton

UniProton is an RTOS that features ultra-low latency and flexible MICA deployments. It is suited
for industrial control because it supports both microcontroller units and multi-core CPUs.
UniProton provides the following capabilities:

⚫ Compatible with processor architectures like Cortex-M, AArch64, x86_64, and riscv64, and
supports M4, RK3568, RK3588, x86_64, Hi3093, Raspberry Pi 4B, Kunpeng 920, Ascend
310, and Allwinner D1s.

⚫ Connects with openEuler Embedded Linux on Raspberry Pi 4B, Hi3093, RK3588, and
x86_64 devices in bare metal mode.

⚫ Can be debugged using GDB on openEuler Embedded Linux.

Application Scenarios

openEuler Embedded helps supercharge computing performance in a wide range of industries
and fields, including industrial and power control, robotics, aerospace, automobiles, and
healthcare.

5 Kernel Innovations

openEuler 24.03 LTS SP2 runs on Linux kernel 6.6 and inherits the competitive advantages of
community versions and innovative features released in the openEuler community.

⚫ Filesystem in USErspace (FUSE) pass-through: FUSE is widely used in distributed
storage and AI applications. In pass-through scenarios, FUSE skips additional processing for
read and write I/Os. It only records metadata and forwards the I/O requests to the back-end
file system. As a result, FUSE processing turns into the main bottleneck for I/O performance.
The FUSE pass-through feature is designed to eliminate the overhead caused by context
switches, wakeups, and data copying on the data plane when FUSE directly interfaces with
the back-end file system. It allows applications to directly send read and write I/Os to the
back-end file system within the kernel. In lab environments, FUSE pass-through has
demonstrated notable performance gains. Specifically, fio tests show that read and write
performance more than doubles for sizes between 4 KB and 1 MB. FUSE pass-through has
also passed fault injection and stability tests, and is available for use as needed.

⚫ Enhanced Memory System Resource Partitioning and Monitoring (MPAM) features: An
improved QoS feature is introduced to optimize memory bandwidth and L3 cache control. In
hybrid deployment scenarios, shared resources can be allocated based on the upper limit,
lower limit, or priority-based policy. The new I/O QoS management feature collaborates with
the system memory management unit (SMMU) to isolate I/O bandwidth traffic across
hardware peripherals and heterogeneous accelerators. It supports monitoring by
iommu_group, providing a new approach to I/O QoS management in heterogeneous
environments. In addition, the L2 cache isolation feature enables monitoring of L2C usage

and bandwidth traffic, offering core-level optimization and performance analysis in hybrid
deployment scenarios. These MPAM features deliver significant performance improvements
in test scenarios. In hybrid deployments, the interference rate of SPECjbb as an online
service drops from 25.5% to below 5%.

6 Cloud Base

High-Density Many-Core Container Isolation

Server chips have evolved from multi-core to many-core architectures (typically exceeding 256
cores), posing new challenges to OSs. To boost rack-level computing density and reduce data
center TCO, many-core servers have become the mainstream in the Internet industry. As cloud
technologies and service scales advance, containerized deployment has also become the
dominant model. Against this backdrop, serialization and synchronization overheads hinder
system scalability, while interference and low resource utilization become increasingly prominent.
These scalability issues in container deployments arise from contention for shared hardware and
software resources.

Feature Description

Lightweight virtualization is used to partition resources by NUMA domain and enforce container-
level resource isolation within each domain. This approach minimizes performance interference
caused by hardware and software resource contention and enhances the container deployment
scalability.

⚫ Lightweight virtualization: Virtual device interrupt offloading allows VirtIO device interrupts
to be handled by hardware, reducing storage virtualization overhead. Poll Mode Driver
(PMD) queue load balancing spreads VirtQueues from a single reactor to multiple reactors,
eliminating CPU bottlenecks.

⚫ CPU scheduling by domain: CPUs are divided into domains by cluster for container
deployment. Each container operates within an independent scheduling domain. This design
isolates interference between containers, reduces cross-cluster cache synchronizations, and
eases contention for hardware resources like cache and NUMA memory. It improves
performance by more than 10% in high-concurrency Redis scenarios.

⚫ Interference isolation in file system block allocation: Optimizations to the group lock and
s_md_lock in the EXT4 block allocation and release processes enhance the scalability of
EXT4 block allocation. When the target block group is occupied, allocation can switch to an
idle block group to reduce CPU overhead caused by multiple containers competing for the
same group. Leveraging multiple EXT4 block groups helps ease group lock contention. Apart
from that, the global target of the streaming allocation is split to inodes, so that the contention
for the global lock s_md_lock is alleviated and the file data is more aggregated. In a 64-

container concurrency scenario, the OPS increases by over 5 times in mixed block allocation
and release workloads and by over 10 times in single-block allocation workloads.

⚫ TCP hash interference isolation: In high-concurrency scenarios, lock contention in
tcp_hashinfo bash and ehash and frequent ehash calculations lead to reduced bandwidth
and increased latency. The spin lock of tcp_hashinfo bash and ehash can be replaced with
read-copy update (RCU), and the ehash calculation method can be changed to lport
increment. These changes reduce the query time and calculations and reduce the lock
contention in the TCP connection hash.

⚫ Enhanced control group (cgroup) isolation: Original atomic operations are replaced with
percpu counters to avoid parent node contention across namespaces and eliminate rlimit
count interference between containers. This mechanism addresses the linearity issue in the
will-it-scale/signal1 test case and triples concurrent throughput performance in a 64-
container deployment. Memory cgroups are released in batches to avoid contention for the
same parent node's counter caused by frequent small memory releases, enhancing memory
count scalability. In the tlb-flush2 test case, this improves throughput by 1.5 times with 64
containers. Leveraging eBPF's programmable kernel capabilities, a host information isolation
and filtering approach is provided to present container-specific resource views. Compared
with the peer LXCFS solution, this openEuler solution avoids the overhead of switching
between the kernel mode and user mode, and eliminates the performance and reliability
bottlenecks associated with the LXCFS process. It doubles the resource view throughput in a
single container and achieves a 10-fold increase in a 64-container deployment.

⚫ Interference monitoring: Interference falls into three categories by result: instruction
execution failure, instruction slowdown, and increased instruction execution. Interference is
monitored from the kernel perspective, with statistics collected on each typical category
during runtime. The system supports online monitoring of schedule latency, throttling, softirq,
hardirq, spin lock, mutual exclusion (mutex), and simultaneous multi-threading (SMT)
interference while incurring less than 5% performance overhead.

⚫ Kunpeng memory and cache QoS control: The memory bandwidth traffic and cache
usage at each level can be configured based on the upper limit, lower limit, or priority-based
policy. Each thread is assigned a specific isolation policy to suit specific service
requirements. The usage of shared resources is monitored in real time at both service and
thread levels, and reported to the control policy to enable feedback-driven control. In
addition, the MPAM feature and the SMMU combine to enhance peripherals' I/O QoS. They
support bandwidth isolation for peripherals and heterogeneous accelerators and allow for
resource monitoring at the device level.

Application Scenarios

In a many-core server environment, service containers are deployed in a high-density
configuration. The openEuler solution minimizes interference between containers, increases
deployment density, and enhances resource utilization.

7 Enhanced Features

epkg

epkg is a new software package manager that is designed to install and manage non-service
software packages. It solves version compatibility issues so that users can install and run
software of different versions on the same OS by using simple commands to create, enable, and
switch between environments.

Feature Description

Version compatibility: enables multiple versions of a software package to run on the same
node.

Environment management: allows users to create, enable, and switch between environments.
Users can use channels of different environments to use different software package versions.
When an environment is switched to another, the software package version is also changed.

Installation by common users: allows common users to install software packages, create
environments, and manage their environment images, reducing security risks associated with
software package installation.

Application Scenarios

epkg solves compatibility issues in installing multiple versions of the same software package.
Users can switch between environments to use different software package versions.

For details, refer to the epkg User Guide.

Heap Resizing by BiSheng JDK 8

Feature Description

In modern containerized deployments, most users' container environments support resource
scale-up. However, OpenJDK 8 has a significant limitation: its maximum heap size can only be
configured at startup. This means it does not support online resizing, preventing Java applications
from immediately using additional memory made available after a container scales up.
Applications currently require a restart to reset their maximum heap. To address this limitation,
BiSheng JDK 8 introduces online heap memory resizing for the Garbage-First garbage collector
(G1GC). This allows users to dynamically update the Java heap memory limit while an application
is running, eliminating the need for a JVM restart.

https://gitee.com/openeuler/docs/blob/master/docs/en/tools/community_tools/epkg/epkg_use/epkg_package_manager_usage_guide.md

Application Scenarios

This capability is crucial for Internet and other container-based deployments that require Java
application heap memory to resize online in response to container resource scale-up.

UDF Automatic Native Framework

Feature Description

The UDF automatic native framework addresses the inefficient JVM execution often seen in open
source big data systems. It automatically converts Java User-Defined Functions (UDFs) into
C/C++ Native UDFs, significantly boosting big data processing performance through efficient
memory management and hardware affinity. Essentially, the framework implements a seamless,
automatic Java UDF native acceleration mechanism. It comprises the UDF parser, UDF IR
optimizer, UDF code generator, and UDF code compiler modules.

The UDF parser automatically converts the bytecode of a service JAR package into Intermediate
Representation (IR) code and extracts UDF code by identifying its specific features. The UDF IR
optimizer optimizes the UDF IR from dimensions such as automatic memory object management
and hardware-affinity acceleration. The UDF code generator translates the optimized UDF IR into
native code. The UDF code compiler compiles the UDF native code into native binaries online.
Finally, these UDF native binaries are deployed to big data execution nodes. The native
execution engine of the big data system dynamically loads and executes the native binaries. This
improves the big data processing performance.

Application Scenarios

The UDF automatic native framework is designed to seamlessly integrate with the Flink big data
native execution engine. By leveraging a Flink DataStream native base library, it achieves
automatic native acceleration for Flink DataStream UDFs, all without requiring any user
intervention.

ANNC

Accelerated Neural Network Compiler (ANNC) is an AI compiler designed for accelerating neural
network computations. It focuses on computation graph optimization, high-performance fused
operator generation, and efficient code generation and optimization to boost the inference
performance of models like recommendation systems and large language models (LLMs). It can
integrate with mainstream open source inference frameworks and various hardware back-ends to
enhance software extensibility.

Feature Description

Computation graph optimization refines the neural network's computational flow. From an
algorithmic perspective, it reduces redundant operations, performs mixed-precision rewriting, and
automatically schedules subgraphs to lower the computational load and improve cache utilization.
From a hardware architecture perspective, it optimizes the tensor data layout, operator fusion and
conversion, and subgraph partitioning and scheduling to further lower the load and fully utilize
hardware resources.

Generating and integrating a high-performance fused operator library comprises three parts:
front-end computation graph pattern recognition and conversion, high-performance operator
library query and integration, and automated operator library generation. At the assembly
instruction level, it reduces memory access and accelerate parallel computations through
optimization techniques like data prefetching, model parallelism, and new instruction sets.

ANNC aims to accelerate AI inference and reduce power consumption through graph compilation
optimization and high-performance operator generation and integration, thereby improving
inference efficiency per unit cost. In addition, its software compatibility and ease-of-use design
reduce operational costs and environmental impact.

Application Scenarios

ANNC now focuses on graph compilation optimization and operator library selection and
invocation. It yields significant benefits for coarse- and fine-ranking models in mainstream search
and recommendation systems. Graph compilation optimization achieves even better results for
complex embedding layer networks that handle intricate feature processing.

Moreover, ANNC has also laid the groundwork for performance optimization in future scenarios,
such as LLMs. By integrating with LLM inference frameworks and combining existing graph-
operator fusion and memory layout optimization techniques with core performance optimization
methods like GEMM, it aims to reduce inference latency and increase inference throughput.

Enhanced oeDeploy

oeDeploy is a lightweight software deployment tool that accelerates environment setup across
single-node and distributed systems with unmatched efficiency.

Feature Description

Multi-scenario support and quick software deployment: oeDeploy facilitates quick
deployment for both single-node applications and clustered software environments. It now
includes quick deployment capabilities for Kubernetes environments with multiple master nodes.
It also extends support for community toolchains like openEuler Intelligence and DevKit Pipeline,
as well as popular Retrieval Augmented Generation (RAG) software such as RAGFlow,
AnythingLLM, and Dify.

Flexible plugin management and excellent deployment experience: oeDeploy provides an
extensible plugin architecture for flexible management of diverse deployment capabilities,
empowering developers to quickly release custom deployment plugins. It now supports plugin
source management, enabling one-click plugin updates and one-click plugin initialization. While

oeDeploy currently offers a streamlined CLI, a GUI and plugin store will soon launch, promising
an even more efficient software deployment experience with less code.

Efficient deployment and intelligent development: oeDeploy introduces the MCP service,
offering an out-of-the-box experience within DevStation. It leverage LLM inference to deploy
software with natural language, boosting deployment efficiency by 2x. It can also convert user
documents into executable oeDeploy plugins, increasing development efficiency by 5x.

Application Scenarios

ISVs and development teams can adopt oeDeploy as a standardized solution for software
product delivery. Its CLI tools and plugin framework minimize development overhead while
ensuring smooth delivery, reducing customer onboarding efforts, and enhancing satisfaction.

For developers and maintenance personnel, oeDeploy enables instant setup of complex
environments, deploying mainstream AI training and inference frameworks in just minutes. This
significantly streamlines software development and eliminates tedious configuration work.
Developers can also extend oeDeploy by creating and sharing custom deployment templates,
democratizing quick deployment for broader user communities. By leveraging foundation models
and MCP capabilities, oeDeploy makes deployment more efficient and development more
intelligent.

Enhanced DevStation

DevStation is an intelligent Live CD developer workstation built on openEuler, designed for geeks
and innovators. It provides an out-of-the-box, efficient, and secure development environment that
streamlines the entire workflow from deployment and coding to compilation, building, and
releasing. By integrating a one-click runtime environment with a full-stack development toolchain,
it enables a seamless transition from system boot to code execution. The new MCP AI engine

allows for quick invocation of community toolchains, offering a significant leap in efficiency from
infrastructure setup to application development, all without complex installation.

Feature Description

Developer-friendly integrated environment: Pre-installed with a wide range of development
tools and IDEs like VSCodium, this distribution supports multiple programming languages to meet
the needs of front-end, back-end, and full-stack developers.

Native community tool ecosystem: New tools like oeDeploy (a one-click deployment tool), epkg
(an extended package manager), DevKit (a development toolchain), and openEuler Intelligence
(an intelligent Q&A system) provide full-lifecycle support from environment configuration to code
deployment. oeDevPlugin and oeGitExt are VSCodium plugins designed for the openEuler
community. They provide visual management for issues and pull requests (PRs), facilitating code
repository cloning, PR submission, and real-time task status synchronization. openEuler
Intelligence supports natural language for generating code snippets, creating API references, and
explaining Linux commands.

GUI-based programming environment: DevStation integrates graphical programming tools to
streamline coding for beginners while offering powerful visual programming capabilities for
veterans. It also comes pre-installed with productivity tools like Thunderbird.

MCP-based intelligent application ecosystem: DevStation deeply integrates the Model Context
Protocol (MCP) framework to build a complete intelligent toolchain ecosystem. It includes pre-
installed MCP servers like oeGitExt and rpm-builder, which provide capabilities for community
task management and RPM packaging. It intelligently wraps conventional development tools like
Git and RPM builders using the MCP protocol, offering a natural language interaction interface.

Enhanced system deployment and compatibility: DevStation offers extensive hardware
support, especially seamless compatibility with mainstream laptop and PC hardware (such as
touchpads, Wi-Fi, and Bluetooth), and a restructured kernel build script (kernel-extra-modules)
to ensure bare metal deployment experience. It also supports flexible deployment options,
including Live CD (one-click run without installation), bare metal installation, and VM deployment.

Application Scenarios

Multi-language development: DevStation is ideal for developers working on multi-language
projects, such as Python, JavaScript, Java, and C++. With various pre-installed compilers,
interpreters, and build tools, it eliminates the need for manual configuration.

Quick installation and deployment: DevStation integrates oeDeploy to deploy distributed
software such as Kubeflow and Kubernetes within minutes. oeDeploy provides a unified plugin
framework and atomic deployment capabilities, allowing developers to quickly release custom
installation and deployment plugins.

Hardware compatibility and bare metal testing: For testers and developers focused on
southbound compatibility, DevStation ensures robust hardware support for mainstream laptops
and servers, and allows bare metal deployment for driver compatibility testing.

Improved developer efficiency: The MCP RPM-builder toolchain improves MCP usability by
supporting automated packaging and releasing of RPM packages to the community. This ensures
that one-click MCP server installation is always available. It helps build a complete MCP
intelligent application ecosystem repository that covers scenarios like deployment, testing, and
performance tuning, including querying assigned community issues, creating PRs to submit code
changes, and automating build and verification via CI/CD.

Enhanced virtCCA

Feature Description

The current virtCCA architecture has this constraint: it only supports a boot mode where the
kernel and rootfs are mounted separately. However, in mainstream cloud platforms, VMs typically
rely on a GRUB bootloader. This requires integrating the Unified Extensible Firmware Interface
(UEFI) firmware (like EDK2), kernel, and initial RAM file system (initramfs) into a single image,
such as a QCOW2 file. Enhanced virtCCA addresses this by providing the following functions:

⚫ Single image encapsulation

− Unified boot stack: virtCCA integrates the EDK2 firmware, GRUB bootloader, kernel,
and initramfs into a QCOW2 image, creating a complete boot stack.

− Streamlined boot process: GRUB uses a configuration file (grub.cfg) to locate the
kernel path, which requires the kernel and initramfs to reside on the same file system, for
example, EXT4 or XFS.

⚫ Secure boot chain

− Secure boot: EDK2 verifies the digital signatures of GRUB and the kernel, ensuring that
the boot components have not been tampered with.

− Hardware resource collaboration: virtCCA leverages UEFI runtime services to
enumerate hardware devices, providing a virtualized resource pool for hypervisors like
KVM.

⚫ Cloud native optimization

virtCCA supports snapshot cloning and dynamic rootfs expansion (depending on cloud-init in
initramfs).

Application Scenarios

The adoption of UEFI as a boot mode in cloud environments is a core technology for modern
virtualization. virtCCA's new UEFI support expands its use cases for confidential VMs (cVMs):

⚫ Fast instance boot and auto scaling

UEFI uses parallel hardware initialization (such as simultaneous detection of CPUs, memory,
and storage devices) to significantly shorten the boot time.

⚫ Large-capacity drive support

Be leveraging the GUID Partition Table (GPT), UEFI breaks the traditional MBR limit of 2 TB.
This allows virtCCA to support cloud drives of 100 TB or more (like Alibaba Cloud's ESSDs),
which is essential for big data storage (such as HDFS) and AI training.

⚫ Automated O&M and batch deployment

UEFI-compatible images provided by cloud service providers streamline user deployment by
enabling GPT partitioning by default.

vKAE Passthrough Live Migration

Feature Description

The Kunpeng Accelerator Engine (KAE) is a hardware acceleration solution based on the new
Kunpeng 920 processor model, featuring HPRE, SEC, and ZIP components for encryption,
decryption, compression, and decompression. This allows KAE to significantly reduce processor
overhead and boost efficiency. KAE passthrough live migration addresses the scenario where
VMs are configured with KAE passthrough devices, offering enhanced operational flexibility and
continuous service availability.

SMMU dirty page tracking is a key technology for efficient and reliable live migration of
passthrough devices. In the Arm architecture, a purely software-based approach to dirty page
tracking incurs significant performance overhead. Hardware Translation Table Update (HTTU)
solves this by allowing the hardware to automatically update the SMMU page table status. During
a write operation, the write permission bit of the corresponding page table entry is automatically
set. During a live migration, the write permission bit of the page table is scanned to collect
statistics on dirty pages.

Application Scenarios

This feature empowers live migration for VMs using KAE passthrough devices, making it ideal for
fields with high requirements for data security and processing performance, such as finance,
cloud computing, and big data processing. Ultimately, it enhances business continuity and
operational stability.

Kuasar Confidential Container

Feature Description

Kuasar has extended its capabilities to include confidential container support while maintaining its
existing secure container functionality. This support can be enabled through iSulad runtime
configuration.

Key functions include:

⚫ Native integration with the iSulad container engine preserves Kubernetes ecosystem
compatibility.

⚫ Hardware-level protection via Kunpeng virtCCA technology ensures confidential workloads
are deployed in trusted environments.

⚫ The secGear remote attestation framework, which complies with the remote attestation
procedures (RATS) (RFC9334), allows containers running in a confidential computing
environment to prove their trustworthiness to external trusted services.

⚫ Container images can be pulled and decrypted in confidential containers to protect their
confidentiality and integrity.

Application Scenarios

Kuasar addresses data security concerns while seamlessly integrating with cloud native
ecosystems. It benefits confidential applications from cloud native advantages including high
availability, auto scaling, and rapid delivery. The solution finds broad application in confidential
computing scenarios spanning AI security, trusted data circulation, and privacy protection.

Global Trust Authority for Remote Attestation

Feature Description

The GTA remote attestation component adopts the client-server model, carrying remote
attestation of the Trusted Platform Module (TPM) and vTPM.

⚫ The server provides the remote attestation service framework, which is compatible with
trusted computing and confidential computing. It supports the addition, deletion, modification,
and query of certificates and policies, quote verification, random number generation, and
JWT token generation.

⚫ The client collects local TPM evidence and interacts with the server to verify quotes.

This component provides various capabilities in terms of security and usability.

⚫ As for security, GTA provides differentiated security competitiveness such as database
integrity protection, data link encryption, anti-replay, SQL injection prevention, user isolation,
and key rotation.

⚫ Regarding usability, the passport and background-check models are available. The client
supports multiple verification modes, such as scheduled reporting and challenge response.
Both the client and server can be deployed using RPM packages and within Docker
containers.

In later versions, GTA will offer virtCCA confidential computing verification.

Application Scenarios

Remote attestation is a prerequisite for enabling confidential computing and trusted computing.
Subsequent computations are allowed only when the operating environment is strictly proven to
be secure and trustworthy in the cryptographic sense. Remote attestation should be included as a
core component of all end-to-end solutions involving confidential computing. If the operating
environment is untrusted, the subsequent tasks must be stopped. This service is widely used in
AI model protection, user privacy protection, and key management.

Enhanced oeAware

oeAware is a framework that provides low-load collection, sensing, and tuning upon detecting
defined system behaviors on openEuler. The framework divides the tuning process into three
layers: collection, sensing, and tuning. Each layer is associated through subscription and
developed as plugins, overcoming the limitations of traditional tuning techniques that run
independently and are statically enabled or disabled.

Feature Description

Every oeAware plugin is a dynamic library that utilizes oeAware interfaces. The plugins comprise
multiple instances that each contains several topics and deliver collection or sensing results to
other plugins or external applications for tuning and analysis purposes.

⚫ The SDK enables subscription to plugin topics, with a callback function handling data from
oeAware. This allows external applications to create tailored functionalities, such as cross-
node information collection or local node analysis.

⚫ The performance monitoring unit (PMU) information collection plugin gathers performance
records from the system PMU.

⚫ The Docker information collection plugin retrieves specific parameter details about Docker
containers in the environment.

⚫ The system information collection plugin captures kernel parameters, thread details, and
resource information (CPUs, memory, I/Os, network) from the current environment.

⚫ The thread sensing plugin monitors key information about threads.

⚫ The evaluation plugin examines system NUMA and network information during service
operations, suggesting optimal tuning methods.

⚫ The system tuning plugins comprise stealtask for enhanced CPU tuning, smc_tune (SMC-D)
which leverages shared memory communication in the kernel space to boost network
throughput and reduce latency, xcall_tune (XCALL) which bypasses non-essential code
paths to minimize system call processing overhead.

⚫ The Docker tuning plugin addresses CPU performance issues during sudden load spikes by
utilizing the CPU burst feature.

Constraints

⚫ smc_tune: SMC acceleration must be enabled before the server-client connection is
established. This plugin is most effective in scenarios with numerous persistent connections.

⚫ Docker tuning: This plugin is not compatible with Kubernetes containers.

⚫ xcall_tune: The FAST_SYSCALL kernel configuration option must be activated.

Application Scenarios

stealtask is ideal for scenarios aiming to boost CPU utilization, such as in Doris. This tuning
instance effectively increases CPU utilization and prevents idle CPU cycles.

xcall_tune is designed for applications with substantial system call overhead. It offers code paths
that bypass non-critical processes, optimizing system call handling and reducing overhead.
However, this approach may compromise some maintenance and security capabilities.

smc_tune excels in environments demanding high throughput and low latency, including HPC, big
data processing, and cloud platforms. By leveraging DMA, smc_tune significantly reduces CPU
load and accelerates interactive workloads.

CPU burst is tailored for high-load container environments like Doris, addressing performance
bottlenecks caused by CPU constraints.

Enhanced secGear

The secGear unified remote attestation framework addresses the key components related to
remote attestation in confidential computing, abstracting away the differences between different
Trusted Execution Environments (TEEs). It provides two components: attestation agent and
attestation service. The agent is integrated by users to obtain attestation reports and connect to
the attestation service. The service can be deployed independently and supports the verification
of iTrustee and virtCCA remote attestation reports. secGear now supports remote attestation of
virtCCA cVMs booted with Unified Extensible Firmware Interface (UEFI) measurement. In
addition, the custom virtCCA Integrity Measurement Architecture (IMA) register is added to
prevent conflicts caused by enabling both UEFI and IMA measurements.

Feature Description

During boot with UEFI measurement, the measurement operation is recorded in an ACPI table:
Confidential Computing Event Log (CCEL). Based on the CCEL, secGear implements remote
attestation for virtCCA cVMs. secGear remote attestation verifies the integrity and trustworthiness
of the UEFI boot process by processing the event log file, and provides evidence for subsequent
remote attestation procedures.

When this feature is used, the remote attestation agent obtains the event log file content on a
virtCCA cVM. If the event log file is found, the agent encapsulates the file content and other
necessary information into a report and sends the report to the remote attestation service for
verification. The service then returns a report containing the event log verification result. If there is
no event log file on the cVM, the procedure is the same as that in direct boot mode. The agent
encapsulates only necessary information into a report and sends the report to the service for
verification. The service returns a report that does not contain the event log verification result.

After IMA measurement is enabled for the virtCCA cVM, the pcr parameter can be customized
during IMA policy configuration to specify a virtCCA register. If both IMA and UEFI measurements
are enabled, set pcr=4 in the IMA policy to ensure IMA measurement uses the last virtCCA
register, thereby preventing measurement extension conflicts.

Application Scenarios

In scenarios like finance and AI, where confidential computing is used to protect the security of
privacy data during runtime, remote attestation is a technical means to verify the legitimacy of the
confidential computing environment and applications. secGear provides components that are
easy to integrate and deploy, helping users quickly enable confidential computing remote
attestation capabilities.

Enhanced GCC for openEuler CFGO

The continuous growth in code volume has made front-end bound execution a common issue in
processors, which impacts program performance. Feedback-directed optimization techniques in
compilers can effectively solve this issue.

Continuous Feature Guided Optimization (CFGO) in GCC for openEuler refers to continuous
feedback-directed optimization for multimodal files (source code and binaries) and the full
lifecycle (compilation, linking, post-linking, runtime, OS, and libraries). The following techniques
are included:

⚫ Code layout optimization: Techniques such as basic block reordering, function
rearrangement, and hot/cold separation are used to optimize the binary layout of the target
program, improving I-cache and I-TLB hit rates.

⚫ Advanced compiler optimization: Techniques such as inlining, loop unrolling, vectorization,
and indirect calls enable the compiler to make more accurate optimization decisions.

Feature Description

CFGO comprises CFGO-PGO, CFGO-CSPGO, and CFGO-BOLT. Enabling these sub-features in
sequence helps mitigate front-end bound execution and improve program runtime performance.
To further enhance the optimization, you are advised to add the -flto=auto compilation option
during CFGO-PGO and CFGO-CSPGO processes.

⚫ CFGO-PGO

Unlike conventional profile-guided optimization (PGO), CFGO-PGO uses AI for Compiler
(AI4C) to enhance certain optimizations, including inlining, constant propagation, and
devirtualization, to further improve performance.

⚫ CFGO-CSPGO

The profile in conventional PGO is context-insensitive, which may result in suboptimal
optimization. By adding an additional CFGO-CSPGO instrumentation phase after PGO,
runtime information from the inlined program is collected. This provides more accurate
execution data for compiler optimizations such as code layout and register optimizations,
leading to enhanced performance.

⚫ CFGO-BOLT

CFGO-BOLT adds optimizations such as software instrumentation for the AArch64
architecture and inlining optimization on top of the baseline version, driving further
performance gains.

Application Scenarios

CFGO has good versatility and is suitable for C/C++ applications, such as databases and
distributed storage, where the overall system performance bottleneck lies in CPU front-end bound
execution. It can typically achieve a performance improvement of 5% to 10%.

New Hygon Secure Processor Models

Feature Description

The Hygon CPU contains two types of cryptographic coprocessors (CCPs): Platform Secure
Processor (PSP-CCP) and Non-Transparent Bridge (NTB-CCP).

PSP-CCP provides Hygon secure processors with built-in functions such as key generation,
secure boot, trusted computing, and CSV, and supports cryptographic operations in modules
such as the Trusted Key Management Module (TKM).

NTB-CCP is used by C86 general-purpose processor cores to support compute-intensive
cryptographic operations.

In openEuler 24.03 LTS SP2, the vendor and device ID of each PSP-CCP and NTB-CCP can be
identified to provide extensive hardware support for the system.

Application Scenarios

Hygon CCPs lay a cryptographic computing foundation for Hygon security functions, and can be
used in all scenarios where the functions are applied. PSP-CCP serves as a hardware backbone
for Hygon's trusted computing and confidential computing technologies. NTB-CCP provides
underlying computing capabilities for cryptographic libraries in the OS.

Hygon Trusted Computing

Feature Description

The Hygon trusted computing kernel driver calls command interfaces provided by the kernel CCP
module. During initialization, the CCP module's cryptographic virtualization check is unrelated to
the trusted computing functionality. This feature optimizes the kernel CCP module to decouple the
trusted computing functionality from cryptographic virtualization, without affecting existing code.
This improves the robustness of the trusted computing functionality.

Application Scenarios

This feature makes Hygon trusted computing more independent. It is mainly used for Hygon's
trusted computing technologies, including the TPM, Trusted Cryptography Module (TCM), Trusted
Platform Control Module (TPCM), Trusted Dynamic Measuring (TDM), and Trusted Secure Boot
(TSB).

Trusted Key Management

In addition to efficient cryptographic computing capabilities, cryptographic applications need to
provide secure key management, because key security is the basis of other security functions.
Many applications use coarse key management methods, and some even store keys in plaintext
in the file system, posing risks to key security. There is an urgent need for secure and easy-to-
use key management methods.

Traditional key management solutions use an independent cryptographic card connecting to the
mainboard through an external interface like PCIe and to the CPU through the bus. This design
has several drawbacks: it raises hardware costs, complicates mainboard design, and increases
the attack surface, leaving the system vulnerable to physical attacks on the bus. To address these
drawbacks, the Trusted Key Management Module (TKM), as one of Hygon's intrinsic
cryptographic technologies, is implemented within the Hygon CPU using a built-in secure
processor to support and expand key management.

Feature Description

This feature provides TKM virtualization and performance optimization.

The TKM virtualization technique can virtualize multiple vTKM instances from the TKM on a
physical host. The following functions are available:

⚫ vTKMs are used in VMs. A vTKM provides the same key management and cryptographic
computing capabilities as the TKM on the host.

⚫ vTKM instances are isolated from each other. Each vTKM instance represents an
independent key space.

⚫ Each VM can exclusively occupy one vTKM instance and use key resources that cannot be
accessed by other VMs. Multiple VMs can also share the same vTKM instance and key
space.

Optimizations have been made for the kernel to send vTKM instances to the PSP hardware:

⚫ The kernel PSP driver can send asynchronous commands to avoid occupying a single CPU
core for a long time.

⚫ PSP RING_BUFFER overcommitment allows batch command sending to the PSP using the
RING_BUFFER data structure and overcommitment of empty commands in a specific format
in the queue. When the PSP reads an empty command, it does not execute it until the C86

general-purpose processor writes a valid command. This optimization reduces the I/O
overhead from C86 to PSP.

Application Scenarios

The TKM can be used to manage keys in cryptographic servers, industrial control systems, key
management systems, and other general systems. Based on TKM interfaces, interfaces
complying with related standards can be encapsulated as required.

The TKM interfaces are SDF interfaces following GM/T 0018 specifications. The interfaces can be
used in dedicated cryptographic devices, such as cryptographic servers, signature verification
servers, and VPN servers. In addition, TKM-equipped Hygon servers can be deployed as
cryptographic service nodes. This approach changes the cryptographic resource access mode
from network access to local access and implements distributed cryptographic computing,
delivering higher performance with lower costs and bandwidth consumption.

Raspberry Pi

Raspberry Pi is a series of single-board computers developed by the Raspberry Pi Foundation
and Broadcom. They are widely used in industrial automation, robotics, Internet of Things (IoT),
education, and enthusiast projects due to their low price, small size, low power consumption, high
programmability, and abundant ecosystem. Raspberry Pi 4B and Raspberry Pi 5 are classic
products, both using Arm processors. Raspberry Pi 4B is a cost-effective entry-level computer,
and Raspberry Pi 5 is an innovative product with significant performance breakthroughs and
extended capabilities, making it competitive in high-performance edge computing.

Feature Description

As typical open source hardware products, Raspberry Pi 4B and Raspberry Pi 5 support multiple
Linux distributions such as Raspberry Pi OS, Ubuntu, and openEuler. They have extensive
peripherals, powerful video encoding and decoding capabilities, LOM, and can be used as
independent computer systems.

Application Scenarios

Raspberry Pi 4B and Raspberry Pi 5 are widely used in many fields:

⚫ Education: programming language learning such as Python, and electronic experiments
using the peripheral interfaces

⚫ Multimedia and entertainment: media center or game console

⚫ IoT and smart home: sensor nodes or smart home hubs for environment monitoring,
automation control, and edge computing

⚫ Server and network applications: home servers, lightweight web services, and
containerized applications

⚫ DIY projects: robot control, 3D printing management, and drone flight control

⚫ Research and development: AI experiments and prototype validation in embedded
development

⚫ Industrial automation: device monitoring, man-machine interface, and machine vision

8 Copyright Statement

All materials or contents contained in this document are protected by the copyright law, and all
copyrights are owned by openEuler, except for the content cited by other parties. Without a prior
written permission of the openEuler community or other parties concerned, no person or

organization shall reproduce, distribute, reprint, or publicize any content of this document in any
form; link to or transmit the content through hyperlinks; upload the content to other servers using
the "method of images"; store the content in information retrieval systems; or use the content for
any other commercial purposes. For non-commercial and personal use, the content of the
website may be downloaded or printed on condition that the content is not modified and all rights
statements are reserved.

9 Trademarks

All trademarks and logos used and displayed on this document are all owned by the openEuler
community, except for trademarks, logos, and trade names that are owned by other parties.
Without the written permission of the openEuler community or other parties, any content in this
document shall not be deemed as granting the permission or right to use any of the
aforementioned trademarks and logos by implication, no objection, or other means. Without prior
written consent, no one is allowed to use the name, trademark, or logo of the openEuler
community in any form.

10 Appendixes

Appendix 1: Setting Up the Development Environment

Environment Setup URL

Downloading and installing
openEuler

https://openeuler.org/en/download/

Preparing the development
environment

https://gitee.com/openeuler/community/blob/master/en/contributor
s/prepare-environment.md

Building a software
package

https://gitee.com/openeuler/community/blob/master/en/contributor
s/package-install.md

Appendix 2: Security Handling Process and Disclosure

Security Issue
Disclosure

URL

Security handling
process

https://gitee.com/openeuler/security-
committee/blob/master/docs/en/vulnerability-management-
process/security-process-en.md

Security disclosure https://gitee.com/openeuler/security-
committee/blob/master/docs/en/vulnerability-management-
process/security-disclosure-en.md

Security Strategy
Overview

https://gitee.com/openeuler/security-
committee/blob/master/docs/en/vulnerability-management-
process/security-strategy-overview-en.md

